On Designs of Maximal $(+1,-1)-$ Matrices of Order $n \equiv 2(\bmod 4)$

By C. H. Yang

When $n \equiv 2(\bmod 4)$, it is known that the absolute value α_{n} of the determinant of nth order $(+1,-1)$-matrices satisfies the following inequalities:

$$
\alpha_{n}{ }^{2} \leqq 4(n-1)^{2}(n-2)^{n-2}=\mu_{n} \quad(\text { see [1] })
$$

and

$$
\alpha_{n}=\mu_{n}^{1 / 2}, \text { for } n \leqq 54, \text { except } n=22,34 \quad \text { (see [1], [2] and [3]). }
$$

Let M_{n} be a maximal $(+1,-1)$-matrix of order $n \equiv 2(\bmod 4)$. Then such a maximal matrix M_{n} can be constructed by the following standard form:

$$
M_{n}=\left(\begin{array}{cc}
A & B \\
-B^{T} & A^{T}
\end{array}\right),
$$

where A, B are circulant matrices of order $n / 2$. T indicates the transposed matrix. In this case, the gramian matrix $G\left(M_{n}\right)$ of M_{n} has the following form:

$$
G\left(M_{n}\right)=M_{n} M_{n}^{T}=\left(\begin{array}{cc}
P & 0 \\
0 & P
\end{array}\right)
$$

where

$$
P=A A^{T}+B B^{T}=\left(\begin{array}{cr}
n & \\
2 & \\
2 & \cdot n
\end{array}\right)
$$

More precisely, we have

$$
G(A)=A A^{T}=\left(a_{i j}\right), G(B)=B B^{T}=\left(b_{i j}\right)
$$

$1 \leqq i, j \leqq n / 2$; where $a_{i j}=b_{i j}=n / 2$, for $1 \leqq i \leqq n / 2$, and $a_{i j}+b_{i j}=2$ for $i \neq j$. Since A, B are circulant ($+1,-1$)-matrices, it can be shown easily that $G(A), G(B)$ are not only circulant but also symmetric, namely, $a_{i j}=a_{|i-j|}$ and $b_{i j}=b_{|i-j|}$. It follows that construction of M_{n} is reduced to finding two finite sequences $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}, 1 \leqq k \leqq(n-2) / 4$, such that $a_{k}+b_{k}=2$.

Let $C=\left(c_{i j}\right)$ be an m th order circulant $(+1,-1)$-matrix, then $G(C)=G\left(C^{T}\right)$ $=G\left(C_{p q}\right)$, where $C_{p q}=\left(c_{k l}\right), k \equiv p+i, l \equiv q+j(\bmod m)$ for fixed integers p and q. Consequently, the finite sequences of C, C^{T} and $C_{p q}$ are identical; therefore, matrices C, C^{T} and $C_{p q}$ are regarded as of the same type.

In the following table, all M_{n}, constructible by all distinct types of A and B with the restriction that $N(A) \leqq N(B)<n / 4$, where $N(C)$ means the number of -1 's in each row of C, are listed for $n \leqq 38$.

The following methods and theorems are helpful for constructions of M_{n}.
Let $S=\left(s_{i j}\right)$ be the m th order circulant matrix such that

[^0]\[

$$
\begin{aligned}
s_{i j} & =1, \text { if } j-i \equiv 1(\bmod m) \\
& =0, \text { otherwise }
\end{aligned}
$$
\]

Then the m th order circulant matrices C, D whose first row vectors are respectively $U=\left(u_{1}, \cdots, u_{m}\right), V=\left(v_{1}, \cdots, v_{m}\right)$ can be represented as

$$
C=\sum_{k=1}^{m} u_{k} S^{k-1} \quad \text { and } \quad D=\sum_{k=1}^{m} v_{k} S^{k-1}
$$

where $S^{0}=I=$ the m th order identity matrix.
Theorem 1. Let

$$
M=\left(\begin{array}{ll}
C & D \\
-D^{T} & C^{T}
\end{array}\right)
$$

then the gramian matrix $G(M)$ becomes

$$
G(M)=M M^{T}=\left(\begin{array}{cc}
G & 0 \tag{1}\\
0 & G
\end{array}\right)
$$

where $G=\left(g_{i j}\right)=C C^{T}+D D^{T}$. And

$$
\begin{equation*}
g_{i j}=c_{i j}+d_{i j}=c_{k}+d_{k}=g_{k}=g_{m-k} \tag{2}
\end{equation*}
$$

if $k=|i-j|$, where $\left(c_{i j}\right)=C C^{T}, \quad\left(d_{i j}\right)=D D^{T} ; c_{i j}=c_{k}=c_{m-k}$ and $d_{i j}=d_{k}$ $=d_{m-k}$, if $k=|i-j|$.

Theorem 2. Let p and q be respectively the number of 1's in the first row vectors U, V of C and D when u_{k}, v_{k} are 0 or 1 . Then

$$
\begin{equation*}
\sum_{k=1}^{m-1} c_{k}=p(p-1) \quad \text { and } \quad \sum_{k=1}^{m-1} d_{k}=q(q-1) \tag{3}
\end{equation*}
$$

And

$$
\begin{equation*}
c_{k}+d_{k}=r, \quad \text { for } 1 \leqq k \leqq m-1 \tag{4}
\end{equation*}
$$

implies

$$
\begin{equation*}
r(m-1)=p(p-1)+q(q-1) \tag{5}
\end{equation*}
$$

Theorem 3. Let A and B be the matrices obtained by substituting -1's for 1's and 1's for 0 's in C and D respectively. Then the elements g_{k} of G berome

$$
\begin{align*}
& g_{k}=2 m, \quad \text { if } k=0, \tag{6}\\
& =2 m-4\left(p+q-c_{k}-d_{k}\right), \quad \text { otherwise } .
\end{align*}
$$

And

$$
\begin{equation*}
g_{k}=2, \quad \text { for } 1 \leqq k \leqq \frac{1}{2}(m-1), \tag{7}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
p+q-r=\frac{1}{2}(m-1) \tag{8}
\end{equation*}
$$

Sketch of the proofs for Theorems 1, 2, and 3. Since the i th row vector and j th column vector of C can be expressed as $U S^{i-1}$ and $\left(U S^{i-1}\right)^{r}$, respectively, we have
The first row of A or B

6	$\begin{array}{r} 3 \\ -1 \end{array}$	$\begin{aligned} & +++ \\ & -++ \end{aligned}$		
10	$\begin{array}{ll}1, & 1 \\ 1, & 1\end{array}$	$\begin{aligned} & -++++ \\ & -++++ \end{aligned}$		
14	$\begin{array}{rr} 3, & 3 \\ -1, & -1, \\ -1 \end{array}$	$\begin{aligned} & -++++ \\ & --+-+ \end{aligned}$	$\begin{aligned} & ++ \\ & ++ \end{aligned}$	
18	$\begin{array}{rrrr}5, & 1, & 1, & 1 \\ -3, & 1, & 1, & 1\end{array}$	$\begin{aligned} & --+++ \\ & -+-++ \end{aligned}$	$\begin{aligned} & ++++ \\ & -+++ \end{aligned}$	
	$\begin{array}{rrrr}1, & 5, & 1, & 1 \\ 1, & -3, & 1, & 1\end{array}$	$\begin{aligned} & -+-++ \\ & --++- \end{aligned}$	$\begin{aligned} & ++++ \\ & ++++ \end{aligned}$	
	$\begin{array}{lllr} 1, & 1, & 1, & 5 \\ 1, & 1, & 1, & -3 \end{array}$	$\begin{aligned} & -+++- \\ & -+-+ \end{aligned}$	$\begin{aligned} & ++++ \\ & ++++ \end{aligned}$	
26	$1,1,1,1,1$,	- - + - +	$++++-$	+++
	$1,1,1,1,1$,	$--++$	$+-+++$	+ + +
	$\begin{array}{rrrrr}5, & 1, & 5, & 5, & 1, \\ -3, & 1, & 1, & -3, & 1, \\ 1,\end{array}$	$\begin{aligned} & --++- \\ & -=-+= \\ & --+-+ \end{aligned}$	$\begin{aligned} & +++++ \\ & ++-+- \\ & -+--+ \end{aligned}$	$\begin{aligned} & +++ \\ & +++ \\ & +++ \end{aligned}$
	$\begin{array}{rrrrr} 1, & 5, & 1, & 1, & 5, \\ 1, & -3, & 1, & 1, & -3, \\ \hline \end{array}$	$\begin{aligned} & -+-++ \\ & ---+ \\ & ---+- \end{aligned}$	$\begin{aligned} & ++-++ \\ & +-++ \\ & -++-+ \end{aligned}$	$\begin{aligned} & +++ \\ & -++ \\ & +++ \end{aligned}$
30	$\begin{array}{rrrrr} 3, & 3, & 3, & 3, & 3, \\ -1, & -1, & -1, & -1, & -1, \\ -1, & 3 \end{array}$	$\begin{aligned} & --++- \\ & --+-= \\ & --+-+ \end{aligned}$	$\begin{aligned} & +-+++ \\ & +++-+ \\ & -++-- \end{aligned}$	$\begin{aligned} & +++++ \\ & -++++ \\ & ++++ \end{aligned}$
	$\begin{array}{rrrr} 3, & 3, & 3, & -1, \\ -1, & -1, & 3, & 3, \\ 3, & -1, & -1, & -1 \end{array}$	$\begin{aligned} & --+-+ \\ & -=-+\frac{+}{-+} \end{aligned}$	$\begin{aligned} & +++++ \\ & ++++ \\ & -++++ \end{aligned}$	$\begin{aligned} & -++++ \\ & +-++ \\ & +--++ \end{aligned}$

$\begin{array}{rrrr} 3, & 3, & -1, & 7, \\ -1, & -1, & -1, & -1, \\ 3, & 3, & 3 \\ 3, & 3, & -1, & -1 \end{array}$	$\begin{aligned} & ---+- \\ & --+-+ \\ & --+-+ \end{aligned}$	$\begin{aligned} & +++++ \\ & +-+++ \\ & +-+-- \end{aligned}$	$\begin{aligned} & +-+++ \\ & ++--+ \\ & +++-+ \end{aligned}$	$\begin{aligned} & -+++ \\ & ++-+ \\ & ++++ \end{aligned}$
$\begin{array}{rrrrr} 3, & -1, & 7, & -1, & -1, \\ -1, & 3, & -5, & 3, & 3, \\ -1, & 3, & 3 \\ -1, & -1 \end{array}$	$\begin{aligned} & ---++ \\ & --+-+ \end{aligned}$	$\begin{aligned} & -++-+ \\ & -+-++ \end{aligned}$	$\begin{aligned} & +-+++ \\ & ++++- \end{aligned}$	$\begin{aligned} & ++++ \\ & -+++ \end{aligned}$
$\begin{array}{rrrr} 3, & -1, & 3, & -1, \\ -1, & 3, & -1, & 3, \\ -1, & 3, & 3, & -1, \\ \hline \end{array}$	$\begin{aligned} & --+-+ \\ & ---+-1 \end{aligned}$	$\begin{aligned} & +-+++ \\ & +++-+ \end{aligned}$	$\begin{aligned} & --+++ \\ & ++++- \end{aligned}$	$\begin{aligned} & ++++ \\ & +-++ \end{aligned}$
$\begin{array}{rrrr} 3, & -1, & -1, & -1, \\ -1, & 3, & 3, & 3, \\ -1, & -1, & -1, & -1, \\ 3, & 7 \\ \hline \end{array}$	$\begin{aligned} & --+-+ \\ & --+--+ \\ & --+-+ \end{aligned}$	$\begin{aligned} & ++++- \\ & +-+-+ \\ & -+--+ \end{aligned}$	$\begin{aligned} & -++++ \\ & ++++ \\ & +-+++ \end{aligned}$	$\begin{aligned} & -+++ \\ & ++++ \\ & ++++ \end{aligned}$
	$\begin{aligned} & --+-+ \\ & -=-+ \\ & ---++ \end{aligned}$	$\begin{aligned} & -++++ \\ & ++++ \\ & -+-++ \end{aligned}$	$\begin{aligned} & +++-+ \\ & +++-+ \\ & +--++ \end{aligned}$	$\begin{aligned} & +-++ \\ & ++++ \\ & ++++ \end{aligned}$
$\begin{array}{rrrr} -1, & 3, & -1, & 7, \\ 3, & -1, & 3, & 3, \\ \hline \end{array}$	$\begin{aligned} & --++- \\ & --+-- \end{aligned}$	$\begin{aligned} & +-+-+ \\ & +-+++ \end{aligned}$	$\begin{aligned} & +++++ \\ & +++-- \end{aligned}$	$\begin{aligned} & -+++ \\ & ++++ \end{aligned}$
$\begin{array}{rrrrr} -1, & 3, & -1, & 3, & 3, \\ 3, & 3, & 7, & -1, & -1, \\ 3, & -1, & -1, & -5, & 3, \end{array}$	$\begin{aligned} & --++- \\ & --++ \end{aligned}$	$\begin{aligned} & +-+-+ \\ & -++++ \end{aligned}$	$\begin{aligned} & +++-+ \\ & -++-+ \end{aligned}$	$\begin{aligned} & ++++ \\ & ++++ \end{aligned}$
$\begin{array}{r} -1, \\ 3, \\ 3, \\ 3, \\ -1, \\ \hline \end{array}$	$\begin{aligned} & --++- \\ & ---+ \end{aligned}$	$\begin{aligned} & +++++ \\ & +-+++ \end{aligned}$	$\begin{aligned} & -+-++ \\ & +++-+ \end{aligned}$	$\begin{aligned} & -+++ \\ & -+++ \end{aligned}$
$\begin{array}{rrrrr} -1, & -1, & 3, & 3, & -1, \\ 3, & 3, & 3, & 3, & -1 \\ \hline 1, & 3, & -5, & -1, & 3 \end{array}$	$\begin{aligned} & --++- \\ & -=--+ \\ & ---++ \end{aligned}$	$\begin{aligned} & ++-++ \\ & -++++ \\ & -+-+- \end{aligned}$	$\begin{aligned} & +++-+ \\ & -+++ \\ & -++++ \end{aligned}$	$\begin{aligned} & -+++ \\ & ++++ \\ & ++++ \end{aligned}$
$\begin{array}{rrrr} -1, & -1, & 3, & -1, \\ 3, & 3, & 3, & 3, \\ 3, & -5, & -1, & -1, \\ 3, & 3 \\ \hline \end{array}$	$\begin{aligned} & --++- \\ & ---+ \\ & ---+- \end{aligned}$	$\begin{aligned} & ++-+- \\ & ++++- \\ & +++-- \end{aligned}$	$\begin{aligned} & ++++- \\ & +++-+ \\ & +++++ \end{aligned}$	$\begin{aligned} & ++++ \\ & ++++ \\ & ++-+ \end{aligned}$
$\begin{array}{rrrr} -1, & -1, & 3, & -1, \\ 3, & 3, & 3, & 7, \\ 3, & -1, & -1, & -5, \\ -1, & 3 \end{array}$	$\begin{aligned} & --++- \\ & -=--+ \\ & ---+- \end{aligned}$	$\begin{aligned} & ++-++ \\ & -++++ \\ & +-++- \end{aligned}$	$\begin{aligned} & ++-+- \\ & +-++ \\ & -+++ \end{aligned}$	$\begin{aligned} & ++++ \\ & -+++ \\ & ++++ \end{aligned}$
$\begin{array}{rrrr} -1, & -1, & -1, & 3, \\ 3, & 3, & -1, & 3, \\ -1, & -5, & 3, & -1, \\ -1, & -1 \end{array}$	$\begin{aligned} & --+++ \\ & ---+- \end{aligned}$	$\begin{aligned} & -+++- \\ & ++--+ \end{aligned}$	$\begin{aligned} & ++-+- \\ & -++++ \end{aligned}$	$\begin{aligned} & ++++ \\ & ++++ \end{aligned}$

$$
\begin{aligned}
c_{i j} & =\left(U S^{i-1}\right)\left(U S^{j-1}\right)^{T}=\left(U S^{i-1}\right)\left(S^{j-1}\right)^{T} U^{T} \\
& =U S^{i-1} S^{m-j+1} U^{T} \quad\left[\cdots\left(S^{k}\right)^{T}=S^{m-k}\right] \\
& =\left(U S^{m+i-j}\right) U^{T}=c_{(m+i-j+1) 1}, \quad \text { if } j>i, \\
& =\left(U S^{i-j}\right) U^{T}=c_{(i-j+1) 1}, \quad \text { if } i \geqq j \quad\left[\cdots S^{m}=I\right] \\
& =U\left(U S^{j-1}\right)^{T}=c_{1(j-i+1)}, \quad \text { if } j \geqq i .
\end{aligned}
$$

Since the gramian matrix is symmetric, i.e., $c_{i j}=c_{j i}$, by defining $c_{k} \equiv c_{1(k+1)}$ $=c_{(k+1) 1}$, we have

$$
\begin{aligned}
c_{k} & =c_{|i-j|}=c_{1(j-i+1)}=c_{i j} \\
& =c_{(m+i-j+1) 1}=c_{|m-(j-i)|}=c_{m-k}, \quad \text { if } k=|i-j| .
\end{aligned}
$$

Similarly we have $d_{k}=d_{|i-j|}=d_{i j}=d_{m-k}$ if $k=|i-j|$.
The equalities (3) can be proved by mathematical induction. When $p=1$, obviously they are true. Assuming that they are true for $p=N<m$, we have $\sum_{k=1}^{m-1} c_{k}=N(N-1)$ and N 1's in U. Without loss of generality, let us assume $u_{j}=0$. Then by replacing $u_{j}=0$ by $u_{j}=1$ in U, which corresponds to $p=N+1$, we observe that $2(m-1)$ terms $u_{j} u_{k}, u_{k} u_{j}(k \neq j, 1 \leqq k \leqq m)$, in $\sum_{k=1}^{m-1} c_{k}=$ $\sum_{k=1}^{m-1} U\left(U S^{k}\right)^{T}=\sum_{k=1}^{m-1} \sum_{i=1}^{m} u_{i} u_{l}[l \equiv i-k(\bmod m)]$, may be affected by this change. Among these $2(m-1)$ terms, exactly $2 N$ terms change the value from 0 to 1 , for there are N 1's among $u_{k}(k \neq j, \quad 1 \leqq k \leqq m)$. Therefore, $\sum_{k=1}^{m-1} c_{k}=N(N-1)+2 N=(N+1) N$, thus they are also true for $p=N+1$.

For proof of Theorem 3, let $A A^{T}=\left(a_{i j}\right)$ and $a_{k}=a_{|i-j|}=a_{i j}$, if $k=|i-j|$. Since $a_{k}=U\left(U S^{k}\right)^{T}=\sum_{i=1}^{m} u_{i} u_{l}[l \equiv i-k(\bmod m)]$, by observing that there are $c_{k}, 2\left(p-c_{k}\right)$, and $m-c_{k}-2\left(p-c_{k}\right)$ terms of $u_{i} u_{l}$ respectively with $u_{i}=u_{l}=-1, u_{i}=-u_{l}=1$ (or -1), and $u_{i}=u_{l}=1$, we have $a_{k}=m-$ $4\left(p-c_{k}\right)$, for $1 \leqq k \leqq m-1$. Similarly, $b_{k}=m-4\left(q-d_{k}\right)$, where $b_{k}=b_{|i-j|}$ $=b_{i j}$, if $k=|i-j|$ and $\left(b_{i j}\right)=B B^{T}$. Consequently, we have

$$
g_{k}=a_{k}+b_{k}=2 m-4\left(p+q-c_{k}-d_{k}\right), \quad \text { for } 1 \leqq k \leqq m-1 .
$$

The equality (8) can be derived easily from (3), (5), (6), and (7).
From (5) and (8), and for a given m and preassigned r, solutions for p and q can be obtained. When $m=11,17, \cdots$, there is no solution for p and q. (See [1] and the table of [2].) For constructions of M_{n}, it is noticed that finding two sequences $\left\{c_{k}\right\}$ and $\left\{d_{k}\right\}$ satisfying (4) is usually easier than finding two sequences $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ satisfying (7).

4 Gunnison Park Boulevard
Oneonta, New York

[^1]
[^0]: Received April 3, 1967.

[^1]: 1. H. Ehlich, "Determinantenabschätzungen für binäre Matrizen," Math. Z., v. 83, 1964, pp. 123-132. MR 28 \#4003.
 2. C. H. YaNG, "Some designs for maximal $(+1,-1)$-determinant of order $n \equiv 2(\bmod 4)$," Math. Comp., v. 20, 1966, pp. 147-148. MR 32 \#5534.
 3. C. H. YANG, "A construction for maximal $(+1,-1)$-matrix of order 54 ," Bull. Amer. Math. Soc., v. 72, 1966, p. 293. MR 32 \#5678.
